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In recent paper a theory of the effect of ac drive on the distribution function and 
escape rate of a multidimensional underdamped nonlinear oscillator subject to 
thermal damping and noise was suggested. The approach was based on 
describing the dynamics in terms of isolated nonlinear resonances and 
supposing that the noise intensity q is asymptotically small, r / ~  0. In the present 
work, the case of finite t/ is considered, when weak resonances cannot be 
described asymptotically. It is shown that for p,./q ~> 1 (Pr is the resonance 
width) the asymptotic results are valid. For pr/tl ~ 1, a semiphenomenological 
theory is developed. 

KEY WORDS: Isolated nonlinear resonances; Fokker-Planck equation; 
thermal averaging; weak-noise asymptotics. 

1. I N T R O D U C T I O N  

In recent work 2 the distribution function of a many-dimensional nonlinear 
oscillator subject to external ac driving, damping, and noise was 
established in the limit of large time. Such a distribution function, essen- 
tially nonequilibrium in the sense of statistical physics, will be called hence- 
forth a relaxed distribution function (RDF). The presence of damping and 
external noise models the interaction with the heat bath and corresponds, 
e.g., to the diffusive approximation in kinetics. (3~ The main result of the 
study was the identification of the strong susceptibility of the "tails" of the 
RDF with the external ac driving in the many-dimensional case. In par- 
ticular, the function ~b describing the leading exponential dependence on 
phase variables of the "tails" of the RDF p = Z exp(-(b/T) (this represen- 

1 Institute of Nuclear Physics, 630090 Novosibirsk, USSR. 
2 A brief.version of the theory is presented in ref. 1, and a complete version in ref. 2. 
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tation is asymptotic in the law-temperature limit T ~  0) was shown to be 
strongly perturbed, ~b 0 - ~b ~ ~bo, even by a weak ac driving ~ e in the many- 
dimensional case, while in the one-dimensional case the perturbation is 
weak, ~bo- ~b ~ x/-e-. The conditions under which this result was obtained 
were: (1) the exact integrability of unperturbed Hamiltonian oscillator 
dynamics and (2) asymptotically low temperatures T satisfying T ~  x/-~. 
The amplitude of ac driving e was also supposed small, e ~ 1, so that the 
Hamiltonian dynamics of the driven oscillator can be well described in 
terms of isolated nonlinear resonances. The importance of the problem can 
be motivated by possible applications to ac-driven rate processes, 
presumably, e.g., in laser-stimulated chemical reactions in gases. 

The Hamiltonian of an ac-driven integrable oscillator can be conven- 
tionally represented 3 in the form 

H =  Ho(J ) + e ~ Vt.(J ) cos(tO - n O t )  (1) 
I, t t  

where J, 0 are action-angle variables for the unperturbed Hamiltonian Ho; 
f2 is the perturbation frequency; and eVtn is the harmonic amplitude with 
the integer index (l, n). Each harmonic generically excites a nonlinear 
resonance which appears in the resonant action-angle variables I, q) 
(q~ = tO - n o t  and I is some linear combination of the components of 3(5)), 
as shown in Fig. 1. The amplitude of oscillations of I at the separatrix 
defines the "resonance width" A J  in J space and is proportional to 

3 In one dimension, a model of the phenomena with exactly the same assumptions as ours was 
considered in ref. 4. 

0 ~rr 

Fig. 1. Phase trajectories in the vicinity of isolated nonlinear resonance in the pendulum 
approximation (15). 
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(e iVan I)1/2. The approach (1'2) was based on the "weak-noise asymptotics" 
(WNA), which is directly applicable only under the condition dJ  2~ 
~ IN, hi ,> r.  This condition cannot be fulfilled for all resonances present, 
since generically an infinite number of resonances is excited with arbitrarily 
small harmonics Vtn. However, this does not hamper the evaluation of 
RDF through our approach (1'2~ for fixed damping and asymptotically weak 
noise (low temperature), since the damping c~ destroys the resonances with 

Vt~ t <:r so that in the leading approximation the resonances with 
e IVtn I ~ ~ do not influence the RDF. For finite noise (temperature) and 
relatively small damping, the approach (1'2) based on the WNA is inap- 
plicable, since there are resonances not destroyed by damping and not 
satisfying the condition ~ I V~nl >> T. In such a situation we need to handle 
weak resonances not amenable to the WNA description, and this is the 
object of the present paper�9 

This paper studies the limits of attempts to increase the range of 
validity of the theory presented in ref. 1 and 2. In order to make the presen- 
tation more self-contained, Section 2 briefly presents the approximations 
making it possible to reduce the primary FPE (2) to the simpler one (12). 
For systematic treatment of this reduction see refs. 1 and 2. 

Section 3 introduces the "modified" weak-noise asymptotics, differing 
from weak-noise asymptotic case ~/--,0 (same as T--*0) considered in 
ref. 1, by allowing the ratio a(efVml)l/2/tl to be arbitrary. Thus, except for 
the last specification, the derivation of Eq. (14) is based on the same 
assumptions as in refs 1 and 2. New (with respect to refs. 1 and 2) ideas 
appear only from that point in order to handle Eq. (14) for arbitrary 
o@ I Vml )1/2/q. 

It seems worthwhile to collect all the limitations on the parameters in 
one place. The first set, which is the same as in refs. 1 and 2, includes the 
following inequalities: 

0Ho / c?Ho I, c~H 0 
�9 - - > > 1  ~ 1 ;  ~ ~-~-x / p ,  ~ '~ lpt . - -~-x  " 

The theory (1'2) was based also on the inequality c~elVml/q ,> 1, though it 
was argued qualitatively that the weak-asymptotic results hold under the 
less restrictive condition ~(~ I gml)l/2)/>> 1. In the present paper this conjec- 
ture is put on a firmer basis. For the underdamped case e I Vt,,J ~ c~ a semi- 
phenomenological approach is developed for determining the influence of 
resonance on the RDF for arbitrary ratio (e IVt, I)m/T. 
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2. FOKKER-PLANCK EQUATION 

The evolution of the distribution density in the phase space is 
governed by the Fokker-Planck equation (FPE). The primary FPE in 
coordinate-momentum space is (1'2/ 

~p Op ~(Uo+e6U)@ 3 ( (?p) 
3 t + P ~ y  + ~y c~p ~p ~ P P + ~ p p  (2) 

where U0(Y) is the unperturbed potential [-the unperturbed Hamiltonian is 
Ho=P2/2+Uo(y)], e6V(y,t) is a periodic perturbation with period 

= 2n/f2, ~ is the damping decrement, and t 1 is the diffusion coefficient. 
Now, we briefly sketch the steps necessary to reduce the FPE (2) to 

the more tractable form (12) (see refs. 1 and 2 for details). First we 
introduce the action-angle variables for the unperturbed Hamiltonian I, 0, 
so that Ho = H0(I); suppose the damping e is small relative to the unper- 
turbed frequencies v x = OHo/~I~, v~ = QHo/~I~: ~ ~ Vx, v~, and average the 
FPE over the "fast" phases 0. The "slow" variables are the actions 1 and 
the resonance phase (p = lO~ + mOz+ n~t. Limiting ourselves to the two- 
dimensional case (four-dimensional phase space), we consider, following 
refs. 1 and 2, only the vicinity of an isolated nonlinear resonance. With the 
resonance condition Ivx(Ix, I~) + mvz(Ix, I~) = ns where f2 is the perturba- 
tion frequency, the local "thermal-averaged" FPE can be written as 

~t + e Vm sin cp ( l ~i + m ~iz) + ( lv x + mv z - n~ ) ~ 

g (--aF~176 0~0 = a--~ + (~R~ + ~R~) a-2-P 

~2p (3) 
+ tlR3 O(p2 + r]R4k Oi k ~---~ 

Here (p is the Fourier harmonic amplitude of the perturbation 6U(I, O, t) 
with the integer index m = l, m, n. The quantities F and G in (3) are the 
thermal-averaged damping vector and diffusion tensor: 

F~ = (2~) 2 ~o  dOx dOz p, ~p, 
(4) 

1 [[2~ ~I~(Y, P) ~It(Y, P) 
Gok, = (~-~)2 jj ~ dOxdO~ Op~ @-----~ 

In (4) [-as in (3)] the summation by the repeated indices is implied, and 
the quantities under the integration should be reexpressed in action-angle 
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variables. The quantities R1 through R 4 in (3) are other averages of the 
type (4) and are not given explicitly, since to the precision to be considered 
they can be neglected in (3). To make the calculations less cumbersome, we 
will consider only the case of separated degrees of freedom in the unper- 
turbed Hamiltonian Uo(x, z) = Ux(x) + U~(z), where the quantities (4) can 
be explicitly found to be (1'2) 

Fok = --Ik 

ik (5) 
Go~z - 6kt v~(Ik) 

The results can be easily generalized for the case of arbitrary (integrable) 
Hamiltonian Ho. 

In the absence of perturbation e = 0  the FPE (3) has the stationary 
solution (1,2) 

 exp( ) 
(N is the normalization factor), which has the familiar Gibbs form with the 
temperature T =  t//c~. What we want to obtain is the steady-state distribu- 
tion established in the limit of large times in the presence of periodic 
perturbations. This steady state is the analogue of the stationary distribu- 
tion in the time-independent system. Such a distribution function, which we 
will call relaxed (RDF), in the chosen resonance vicinity can only be the 
stationary solution of the FPE (3). Omitting the terms R 1 through R 4 in 
(3), which should vanish in the following approximations in the same way 
as demonstrated in refs. 1 and 2, we obtain the FPE for RDF in the form 

(lvx +mvz -n f2 )~ -~  + ~V,,sin rp l x + m ~ z  

= ~---~ v~ ~-i~ + ~ ~ + q v~ O Iz ] (7) 

The resonance line (resonance center) is defined by 

,50 = lvx(Ix) + mVz(Iz) - ns = 0 (8) 

In the vicinity of this line let us introduce the resonance action variables 
I I ,  I2 : 

I1 = Ie/m 

12 = -1~ + / / ~  (9) 
m 
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The action 12 is the integral of motion for the Hamiltonian oscillations on 
the resonance. The FPE in these variables is 

~p c~p 
&n ~ + e V~, sin (p 

=~ I l p + ~ I 2 p  

where 

+t 1 Ou~+202~ai1ai---~2+Ozz-~2j+q P,-~l+P2~-~2 (10) 

Q l l  - -  

Q21 ~- 

11 

mVz 

lI1 
m Y  z 

( -12+ll l  
vx mVz 

Q22 m 
l 2 

t - - -  11 

11) 

+7 (PI--~cP2)~P + P2 24 (12) 

The quantities P1, P2 in the last term in the rhs of (10) are not Dven 
explicitly since they will be shown to vanish. Now, since we consider the 
variation of the RDF in the vicinity of the resonance line 11 =11o(12) 
defined by the condition (8), it is convenient to introduce one more set of 
variables p= I1-110(12), I2, (p. The variable p measures the deviations 
from the resonance center (for I2 = const), while the variable /2 for p = 0 
parametrizes the motion along the resonance line. Introducing the 
parameter ~:(I2), expressed through the tangent of the slope of the 
resonance line tg 7 = dlzo/dlx as 

dllo tg 7 

d I  2 - -  - - m  -I- 1 tg 7 

we rewrite the F P E  ( 1 0 )  in new variables as 

+ e V m sin (o 
3p 

&o @ 
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If the nonlinear resonance is sufficiently narow, i.e., its "width" 

/ (~ ((5(.0) 1/2 

satisfies the standard condition for the "universal" description (5~ 
pr~Ilo, I20, then the detuning &o [Eq. (8)] (12) in can be linearized in p 
around the resonance line 11 =Ilo(I2), so that &o ~ 2(I2)p. The quantities 
K, Qll, Q12, Q22 in the same approximation can be taken on the resonance 
line, i.e., at p = 0, and therefore depend only on I2. I1'2) The derivative c?fi?12 
in (12), and in all the subsequent formulas, implies O/OI2]p,~o . . . . .  t. 

3. M O D I F I E D  W E A K - N O I S E  A S Y M P T O T I C S  

In the theory of refs. 1 and 2 the solution of the FPE (12) was found 
in the WNA r/--, 0. In this asymptotic, the only nontrivial case corresponds 
to the extremal (most probable trajectory) passing along the resonance line 
I1 =Ilo(I2). In simpler terms, this is the situation when the particles, in 
order to undertake a large excursion to the distribution "tail" region, 
choose the resonance line as their favorite path. Only under this condition 
does the resonance have a strong effect on RDF. Our goal will be the 
extension of this approach to the case of a "narrow" resonance, i.e., the 
study of the limit r / ~  0 for an arbitrarily small value of perturbation and 
resonance width ~ x / ~ .  Owing to this smallness, the WNA treatment (1'2) is 
invalid, and a modification is required. 

In order to develop the analytical treatment of the problem, we need 
to use the asymptotic smallness of the parameter q ~ 0. Since we already 
have one free parameter, the resonance harmonic amplitude e Vm, which 
can be arbitrarily small relative to ~/, the only way of preserving the 
meaningfulness of the condition t / ~  0 is to suppose the largeness of all the 
parameters of the problem other than e Vm, relative to 7. So the scale of 
variation of the harmonic amplitude V~(I2), as of all the rest of the 
parameters of FPE (12), will be supposed to be fixed while t / ~  0. Then, the 
solution of the FPE (12) in the limit r/--.0 can be assumed by the same 
arguments as in refs. 1 and 2, to have the following functional form: 

p(p, I2, cp, tl)=Z(p, iz,(O,q)exp( ~q~2)) (13) 

with gZ/~?I2 ~ Z  (i.e., tends to a constant for q ~ 0). The representation 
(13) corresponds to the WNA applied only in a single direction, along the 
resonance line (variable I2). In the transverse direction (the variable p) the 
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variation of RDF is defined by the preexponential factor Z. Substituting 
similarly to the WNA approach, (~'2/ the representation (13) in the FPE 
(12) and singling out the highest degree of (1/tl), we arrive at 

8Z 8Z 
2p ~ +  eVm sin (p -~p 

= _e[~(Izq-2_q Q22q2) 

+ (2Q21q-I1o-2Q22~cq)~-(Q1~+Qz2tC2-2021~c) q-~ C3~p 2] Z 

(14) 

where q = dO/dI2. Since we will be interested, as in refs. 1 and 2, only in the 
exponential dependence of RDF on the coordinate along the resonance 
line, our goal will be the evaluation of q(I2). 

To proceed with the analysis of Eq. (14), consider the underdamped 
case ~ 11101 ~ e I V~,I. The introduction of this limitation is the price we have 
to pay for allowing the resonance width ~o be unspecified relative to r/. In 
refs. 1 and 2, when considering a fixed resonance width for asymptotically 
small q, we were able to handle the arbitrary ratio IC~IIo/~VmJ. Quite 
naturally, widening the range of applicability of the theory in one 
parameter narrows the range of applicability in another parameter. Still, as 
we will see later, even this kind of generalization clarifies many aspects of 
the possibilities of the approach (1'2) to describe the ac-driven distribution 
functions and escape rates of many-dimensional exactly integrable systems. 

In the underdamped limit ~I~o~e [Vml, the reduction of Eq. (14) to 
lower dimensionality through the "thermal averaging" technique (see refs. 
1 and 5-7) is straightforwalrd. The function Z has to be supposed constant 
along the trajectories of the Hamiltonian dynamics (c~=0, r /=0)  and 
Eq. (14) averaged along these trajectories. The Hamiltonian dynamics in 
our case is described by the pendulum approximation of the resonance 
Hamiltonian for canonically conjugate variables p, q),(5) 

)~pa (15) H = - ~ - +  eVm cos (p 

which corresponds to the Liouville operator 

s  = 2p - • V m sin ~o 8p 
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acting on Z in the lhs of (14). The trajectories of the Hamiltonian (15) are 
shown in Fig. 1. For brevity, we introduce the quantities 

a = Q22q 2 - I2q 

b = 2Q22~cq + Ilo - 2Q2t q (16) 

c =  Qll + Q22tcZ-2Q21K 

and rewrite Eq. (14) as 

s  O-~-+e~p2) (17) 

The "thermal averaging" in (17) can be performed (~'2'64~ by (1) conducting 
the differentiations in the rhs of (17) while supposing the function Z to 
depend on p and q~ only in the combination H of (15), and (2) averaging 
the resulting equation over time, supposing p and (p to depend on time as 
the Hamiltonian trajectories of (15). The lhs of (17) then becomes zero. 
Introducing simultaneously the action variable J(H) for the pendulum H in 
(15)(1,2,6 8) to be the argument of Z instead of H eventually yields 

- Z +  b Z = 0  (18) 

where 

0J 2 
(19) 

The symbol ( - - . )  in (19) implies the averaging over time along the 
trajectories of the Hamiltonian H. It is important for what follows that the 
reduction (18) is obtained for arbitrary Hamiltonian H corresponding to 
the Liouville operator in the lhs of (17), though we are primarily concerned 
with a particular Hamiltonian (15). In deducing Eq. (18), one would need 
the general relation 

(20) 

and the fact that the quanbtity F does not depend on aT, both of which stem 
from the canonical nature of J and p, (p.(1,2,6,v~ 
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Note that copnsidering the preexponential factor Z and the corre- 
sponding variations of RDF in the p direction does not mean that we are 
trying to construct the RDF, attaining its variations on scales as small as 
the resonance width ~(eIV,,,I)l/2. Since in the general situation one has to 
take into account several resonances and due to the formation of small (of 
the order of the resonance width) stochastic regions in the vicinities of their 
intersections, this would turn out to be impossible. (~'2) However, to find the 
parameter q defining the variation of the RDF along the resonance line, we 
need to consider the next order of approximation, i.e., the equation for Z. 
The parameter q then will be found from the self-consistency of this equa- 
tion and "physical" boundary conditions for Z. Such logic is generic in 
singular perturbation schemes in general and in particular in the thermal 
averaging (6"7) or so-called fast variable elimination ~81 techniques for 
Fokker Planck equations. 

Equation (18) should be interpreted as a continuity equation. The first 
term corresponds to a distributed self-consistent source of particles, 
appearing, as can be easily demonstrated, from the nonzero divergence of 
the "tangent" flux. Indeed, since this "tangent" flux is the component of the 
flux Jh in the continuity form 

~-~J~+~pJ'p + ~--~2 J12 = 0 

of the primary FPE (12), the condition Ojlj•I2=O in the leading 
approximation in powers of l / t / is  the same as a = 0. The expression under 
the derivative d/dJ in (18) is therefore the "transverse" flux flowing along 
the J direction (the net flux across the closed curve H =  const in the p,~o 
plane). In the WNA solution of Eqs. (12) and (14) (in the limit 
• V  m = const, ;7--+ 0), (1'2) the "tangent" flux is of a zero divergence, so that 
the coefficient a in (16) is zero, and q is defined by the condition a(q)=0. 
The zero divergence of the "tangent" flux can be given a graphical explana- 
tion. Indeed, for small noise (large resonance width) the probability for the 
particle to deviate from the resonance center to which it is attracted by 
damping and reach the separatrix surface H(I2, p, ~0)=EV m [with H in 
(15)] is exponentially small. (1'2~ Therefore, conservation of the number of 
particles inside the separatrix takes place, leading to the zero divergence of 
the "tangent" flux. The goal of the present study is the consideration of the 
"narrow" resonance case, when the particles moving along the resonance 
line have a substantial probability of "falling out" of resonance. 

The action variable J for the pendulum Hamiltonian H of (15) can be 
easily evaluated in terms of elliptic integrals (see, e.g., ref. 5). The coef- 
ficients F, G in (19) can be also expressed through elliptic integrals. In ref. 6 
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only the one-dimensional case was considered, so that the obtained 
thermally averaged coincides with our Eq. (18) with the first zero term. In 
this case, the RDF can be obviously found in quadratures for arbitrary F, 
G. In our case a is nonzero and the situation is different, since the linear 
second-order ODE with coefficients that are special functions of the argu- 
ment cannot be solved explicitly. Therefore, we cannot solve Eq. (18) 
exactly and some further approximations are needed. As such, we will use 
the phenomenological change of the exact trajectories of the pendulum 
Hamiltonian H of (15) shown in Fig. 1 by the "simplified" trajectories 
shown in Fig. 2. The width in p of region II (inside the separatrix) in Fig. 2 
will be taken to be kpr, where k ~ 1 will be a phenomenological constant. 

Now, Eq. (17) can be averaged along the "simplified" trajectories, sup- 
posing that the Liouville operator s  in the lhs corresponds to these trajec- 
tories. The average of the lhs is again zero. The result of averaging the rhs 
will be rather different in regions I and II. In region I, p is a constant of 
motion, so that averaging the rhs leaves it unchanged. Thus, in region I of 
Fig. 2 the function Z satisfies the equation 

ap z:~ (21) 

Since the coefficients a, b, and c in (21) are independent of p, the solution 
of Eq. (21) in regions I a and I b (above and below the resonance) of Fig. 2 
can be written as 

Za = B e x p ( - K  1 pl/#1) 

Z b = B exp( - K 2 p~/tl) 
(22) 

__ = i~ -- ~ !~ 

i ~ ~ I ~ 

0 277- 

~7 
j -  

Fig. 2. "Simplified" trajectories approximating the exact ones of Fig. 1. 
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where the variables p ~ = p - k p r  and p2=p+kpr  are introduced for 
convenience, and the coefficients K1 and K2 are 

b (b 2 + 4ac) 1/2 
K1 = ~cc + 2c 

b (b 2 - 4ac) 1/2 
K 2 = 2c 2c 

(23) 

The normalization constant B for Za (Z in the region P)  and Z b (Z in the 
region I b) was taken to be the same, since from the supposed constancy of 
Z along the trajectories and continuity of Z we have the condition 
Z~(pl = 0 ) =  Zb(P2 =0). The choice of particular solutions (22) from the 
general solution, which is a linear combination of the two, is defined by the 
physical sense of the RDF to be found. Indeed, a nonzero positive value of 
a in (17) and (21) corresponds to a continuously distributed, in the plane 
p, ~o, source of particles. These particles spread in both directions of p, and 
the unique choice of solutions (22) is the one that provides the oppositely 
outflowing fluxes in regions I ~ and I b (see also below). 

For the averaging of Eq. (17) in region II let us introduce the variable 
y labeling different trajectories, so that Zn = Z.(y) .  We define this variable 
to equal the value of p on the upper section of the trajectory rectangle. The 
quantity y is therefore a uniquely determined function of p and q~ in region 
II. To perform the averaging, we make use of the identity 

o~a+b<Oy > c3 + rl[/~?2y\ 0 I ( @ ) 2 >  ~ z ]  
~PP II 0y C -  -[- (24) - - -  ~ L \ @2 / n @ ~p n -~fsy 2 

where the symbols ( . .-> stand for the averaging along the trajectories in 
region II. For the averaging we need to know not only the form of trajec- 
tories, as shown in Fig. 2, but also the corresponding time dependence. We 
will suppose that the velocity of motion in the p, (p plane is time dependent 
and the same at all four sections of the rectangle. This qualitatively 
corresponds to the primary pendulum motion (15) and for such motion a 
piecewise-continuous Hamiltonian can be constructed. From the definition 
of y we see that ~2y/~p2 = 0 for all four sections of the rectangle, @/@ = 0 
at side sections, #y/Op = 1 at upper sections, and Ou/@ = -1  at lower ones. 
From this, for the averages in (24) one obtains 
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/ ~2y\ 

= o  (25) ap/. 

((U) ' 
~ 2 

Thus, the averaged equation in region II is 

~- 7 g Z I I (Y  ) = 0 (26) 

with the general solution of the form 

Zii = A cos ~Y + ~ (27) 
fl 

It is not difficult to show that the net flux of particles through the curve 
y = const is given for arbitrary Z(y) by the relation 

cfl dZ 
JP-2e  dy (28) 

Substituting the expression (27) in the formula (28) and requiring the flux 
jy at the point y = 0 to be zero (since we have no singular sources at this 
point), we obtain the first constant ~u of the general solution (27): 0 = 0 .  
The second constant A is defined by the continuity condition of Z on the 
"separatrix" y = kp,., giving 

Zal , , .  =o = Zb  I,,2= o = Z . I  y = k p  r 

and yielding 

A cos = B (29) 
L \ C / fl _1 

The last condition, which will give together with (29) a closed system for 
the coefficients a, b, and c and subsequently define the magnitude of q, is 
the continuity of fluxes on the "separatrix" y = kp,.. Indeed, the outflowing 
of the region II flux jy at y = kp, should equal the sum of fluxes (the lower 
one should be taken with the negative sign) in regions I a and I b at Pl = 0 
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and P2 = 0, respectively. The fluxes in region I are given, as follows from 
the continuity form of Eq. (21), by 

jp1= (b + c ~ - ~ )  (30) 

From (30), substituting the expressions (22), the required condition is 

c(K 1 - K 2 ) B = ~ A  - -  sin (31) 

Exclusing the constants A and B from relations (29) and (31) yields 

Recall that since the quantities a, b of (16) are functions of q, Eq. (32) 
defines the quantity q as a function of the resonance width p r =  
(2e I Vml/2) 1/2 and the parameters involved. This function cannot be written 
explicitly due to the transcendental character of (32). 

An important result can be seen without the solution of Eq. (32). 
Indeed, from (32) we see that the factor of the exponential variation of the 
RDF, q = dO/dIz, depends on the resonance width Pr and noise intensity r/ 
only as their ratio pr/tl. The same assertion can be easily seen to be valid 
within the limits of the considered precision also for the primary system 
without a phenomenological description of the trajectories. This conclusion 
is of major importance, as explained in the Introduction, for determining 
the range of applicability of the WNA approach (1'2) to the calculation of 
the RDF and escape rates of noisy underdamped ac-driven nonlinear 
oscillator (see also the Conclusions). 

Additional implications of Eq. (32) can be obtained from the con- 
sideration of the limits C~pr/t/ ~> 1 and ePr/q ~ 1. Let us begin with the first 
case. Since the RDF should be everywhere positive, the argument of tan in 
(32) should lie in the range [0, rc/2]. The coefficient c does not depend on 
q, and we conclude therefore that a(q) --* 0 for ~pr/tl -," oo. This is evidently 
the correct result, since in the WNA solution (the limit p r=cons t ,  
r / ~  0) (1'2) the magnitude of q is defined by the equation a(q) = 0. The two 
solutions q = 0 and q = I2/Q22 of this equation correspond to two possible 
directions of extremal along the resonance line. We can also obtain the first 
nonvanishing (in powers of epr/Yl) correction to the WNA solution. From 
(32) it is 

~2 C 
a ~ - -  (33) 

8 k2(~p,./rl) 2 
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Recall once more that k is a phenomenological constant of the order of 
unity. 

To consider the other limiting case, epr/tl ~ 1, we observe first that the 
magnitude of q for arbitrary c~pr/~l should lie outside of the interval 
[0, I2/Q22]. Indeed, the physical reason for the influence of the ratio p / t  1 
on the magnitude of q is the process of the particles "falling out" of the 
resonance separatrix. This process evidently hampers the particle progress 
along the resonance line, lowering the probability of reaching the points on 
this line. The probability (RDF) exponentially decreases in the direction of 
the extremal along the resonance line, ~ with the quantity ]ql = Id~/dI21 

measuring the rate of the exponential decrease. The sign of q is evidently 
defined by the extremal direction, and we see that the increase of the 
modulus of q from the WNA values should shift q out of the range 
mentioned above. From this, it is clear that the quantity a in (16) is always 
larger than zero, while c is positive due to the positive definiteness of the 
diffusion tensor Q~v(11). The quantity b 2 -  4ac entering the lhs of Eq. (32) 
can be written as 

2( ,'~ 2 b 2 - 4ac = q ~d21 - 4Q22QH ) + 2q[Ilo(ZQ22~c - Q2~) 

+ 212(Qli + Q22 K2 - Q21 ~c)] + I120 (34) 

From the expressions (11) for Q11, Q12, and Q22 it follows that the coef- 
ficient of q2 in (34) is negative. Since for a = 0 the quantity b 2 -  4ac is 
positive, it is clear that the equation b 2 -  4ac = 0 always possesses two real 
roots q = q m ,  q02. It is these particular roots which evidently satisfy 
Eq. (32) in the limit c~pr/q ~ O. We argue, however, that these solutions are 
"nonphysical"--such values of q are not realized. Indeed, the limit 
c~p/q ~ 0 corresponds to the absence of resonance, and the values q = q0~ 
and q = q02 can be easily shown to follow from the WNA limit of the FPE 
(7) in the absence of resonance, eVm=0 , under the condition of the 
extremal to pass by the resonance line 11 = I1o(I2). It is clear, therefore, that 
these solutions correspond to the fluxes artifically injected at infinity and 
cannot be realized when constructing the "global" RDF over all the phase 
space from the minimization of the specific action functionals accounting 
for the "global" resonance pattern. (~'2) Thus, the limit e p j t l - ~ O  leads to 
"nonphysical" solutions which can be discarded, and i n this limit the 
resonance just disappears--it  has no effect on the RDF. It is clear also that, 
similar to the existence demonstrated in refs. 1 and 2 of a critical damping 
:~c~ below which the overdamped resonance in the WNA regime at the 
point of consideration has no effect on the RDF, for our finite-noise, 
strongly-underdamped case there exists a critical value of (~p f fq )~  below 
which the resonance at the point of consideration is switched off. Note that, 

822/60/3-4-14 
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just as for C%r, this critical value of (~Pr/~)cr will depend on the point on 
the resonance line and generically also on the global resonance pattern 
(nonlocality property). (1'2) 

Thus, the factor q of the exponential variation of the RDF p along the 
resonance line q=(~/~I2)1~=1~o(~2~ is defined by the transcendental 
equation (32) and lies in the range [qlo, 0] or [I2/Q22, qo2]. The coefficient 
k in (32) is a phenomenological constant of the order of unity and should 
be fitted from numerical simulation. For the estimate, the quantity k can 
be considered unity. 

4. C O N C L U S I O N S  

From the results of the present work it follows that the resonance 
influences the exponential "tails" of the RDF only when its width is larger 
than or of the order of the temperature t//e, and for c~pr/q > 1 this influence 
is the same as in the WNA theory ~1'2~ (pr= const, q ~ 0 ) .  On the other 
hand, the "staightforward" applicability condition of WNA is Pr ~ %/-~. 
Therefore, in the underdamped case considered in the range ~ > P r > t/, 
the WNA is directly inapplicable, but gives a correct result for the variation 
of the RDF along the resonance line. Such an observation is not self- 
evident and, together with the obtained phenomenological description of 
the range ~pr/rl ~ 1, is the major result of the present work. 
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